Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.524
Filter
Add more filters

Publication year range
1.
Acta Cir Bras ; 39: e391524, 2024.
Article in English | MEDLINE | ID: mdl-38629649

ABSTRACT

PURPOSE: Pre-eclampsia (PE) is a pregnancy-related complication. Eucommia is effective in the treatment of hypertensive disorders in pregnancy, but the specific effects and possible mechanisms of Eucommia granules (EG) in PE remain unknown. The aim of this study was to investigate the effects and possible mechanisms of EG in PE rats. METHODS: Pregnant Sprague Dawley rats were divided into five groups (n = 6): the control group, the model group, the low-dose group, the medium-dose group, and the high-dose group of EG. The PE model was established by subcutaneous injection of levonitroarginine methyl ester. Saline was given to the blank and model groups, and the Eucommia granules were given by gavage to the remaining groups. Blood pressure and urinary protein were detected. The body length and weight of the pups and the weight of the placenta were recorded. Superoxide dismutase (SOD) activity and levels of malondialdehyde (MDA), placental growth factor (PIGF), and soluble vascular endothelial growth factor receptor-1 (sFIt-1) were measured in the placenta. Pathological changes were observed by hematoxylin-eosin staining. Wnt/ß-catenin pathway-related protein expression was detected using Western blot. RESULTS: Compared with the model group, the PE rats treated with EG had lower blood pressure and urinary protein. The length and weight of the pups and placental weight were increased. Inflammation and necrosis in the placental tissue was improved. SOD level increased, MDA content and sFIt-1/PIGF ratio decreased, and Wnt/ß-catenin pathway-related protein expression level increased. Moreover, the results of EG on PE rats increased with higher doses of EG. CONCLUSIONS: EG may activate the Wnt/ß-catenin pathway and inhibit oxidative stress, inflammation, and vascular endothelial injury in PE rats, thereby improving the perinatal prognosis of preeclamptic rats. EG may inhibit oxidative stress, inflammation, and vascular endothelial injury through activation of the Wnt/ß-catenin pathway in preeclampsia rats, thereby improving perinatal outcomes in PE rats.


Subject(s)
Pre-Eclampsia , Pregnancy Complications , Humans , Rats , Female , Pregnancy , Animals , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Placenta , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , beta Catenin/metabolism , Placenta Growth Factor/metabolism , Placenta Growth Factor/pharmacology , Placenta Growth Factor/therapeutic use , Oxidative Stress , Pregnancy Complications/metabolism , Inflammation/pathology , Superoxide Dismutase/metabolism
2.
Mol Med ; 30(1): 41, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519941

ABSTRACT

BACKGROUND: Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS: Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS: In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION: The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.


Subject(s)
Prostatic Hyperplasia , Humans , Male , Mice , Animals , Aged , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Tumor Necrosis Factor-alpha , Plant Extracts/pharmacology , Prostate/metabolism , Prostate/pathology , Inflammation/pathology
3.
J Ethnopharmacol ; 327: 117969, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38437888

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Zexieyin formula (ZXYF), a traditional Chinese herbal formula recorded in the Huangdi Neijing to have efficacy in relieving spleen dampness and heat accumulation syndrome, which is also the key pathogenesis of atherosclerosis (AS). The efficacy has demonstrated by our previous studies. However, the intrinsic mechanism of ZXYF for treating vascular inflammation and the effect of inflammatory response on plaque are not known. Currently, plaque stabilization is crucial for the prognosis of AS. AIM OF THE STUDY: Our study mainly focused on the therapeutic effects of ZXYF on high-fat diet (HFD)-induced vascular inflammation and vulnerable plaques (VP) in mice and explored its underlying mechanism. METHODS AND MATERIALS: Male apolipoprotein E knockout (APOE-/-) mice were fed HFD for 8 weeks to establish a VP model. During this period, the mice were also administered ZXYF, while atorvastatin (ATO) was used as a positive control. Aortic plaque area and morphology were detected by oil red staining and HE staining. Aortic plaque collagen content was detected by Masson staining. M1/M2 type macrophages were detected using immunofluorescence (IF). The study analyzed the levels of inflammation-related cytokines (IL-1ß, IL-10, IL-6), MAPK/NF-κB pathway proteins, and NLRP3 inflammasomes (NLRP3, Caspase-1) using Western blot. Additionally, the levels of matrix metalloproteinase (MMP)-2 and MMP-9 and α-smooth muscle actin (α-SMA) in the aorta were analyzed using immunohistochemistry (IHC). The plaque instability index was calculated for each group using the vulnerable plaque formula. RESULTS: In this study, APOE-/- mice were fed high-fat diet for 8 weeks. The results of oil-red and HE staining indicated a significant increase in the aortic plaque area of the mice, which exhibited a typical VP phenotype. ZXYF and ATO significantly improved AS plaques and prevented plaque rupture. HFD exacerbated vascular inflammation, stimulated macrophage conversion to M1-type through the MAPK/NF-κB signaling pathway, and released pro-inflammatory factors such as interleukin (IL)-1ß, IL-1α, and IL-6. These factors activated NLRP3 inflammasome, leading to cellular death. However, ZXYF could reverse this trend and promote the conversion of macrophages to the anti-inflammatory M2 type. The anti-inflammatory effect of ATO was not significant. Moreover, HFD promoted the release of MMP-2 and MMP-9 from macrophages, which degraded plaque collagen, and induced a decrease in plaque SMC content, resulting in a thinning of the plaque fibrous cap. In contrast, ZXYF inhibited the decomposition of plaque collagen and increased the content of plaque smooth muscle cells (SMC) by reducing macrophage secretion of MMPs, thereby stabilizing plaques. Although ATO could reverse the decrease in plaque collagen and SMC content, its effect on MMPs was not significant. Finally, we calculated the vulnerability index to assess the overall risk of the plaque vulnerability phenotype. In line with these findings, ZXYF and ATO were able to effectively reverse the increase in the vulnerability index caused by HFD and lower the risk of adverse cardiovascular events. CONCLUSION: Our results suggested that ZXYF could reduce inflammation and increase plaque stability by inhibiting the MAPK/NF-κB signaling pathway, which provided a theoretical basis for clinical application and subsequent research.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Male , Animals , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Matrix Metalloproteinase 9/metabolism , Interleukin-6 , Mice, Knockout, ApoE , Atherosclerosis/metabolism , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/pathology , Signal Transduction , Inflammation/pathology , Inflammasomes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apolipoproteins E/genetics , Collagen
4.
Sci Rep ; 14(1): 7476, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553498

ABSTRACT

Isorhamnetin is a natural flavonoid compound, rich in brass, alkaloids, and sterols with a high medicinal value. This study investigated the effects of isorhamnetin on liver injury and oxidative and inflammatory responses in heat-stroke-affected rats in a dry-heat environment. Fifty Sprague Dawley rats were randomly divided into five groups: normal temperature control (NC, saline), dry-heat control (DHC, saline), low-dose isorhamnetin-pretreated (L-AS, 25 mg/Kg), medium-dose isorhamnetin-pretreated (M-AS, 50 mg/Kg), and high-dose isorhamnetin-pretreated (H-AS, 100 mg/Kg) group. Saline was administered to the NC and DHC groups and corresponding concentrations of isorhamnetin were administered to the remaining three groups for 1 week. Blood and liver tissue were analyzed for oxidative stress and inflammation. The liver histopathological injury score, serum liver enzyme (alanine transaminase, aspartate transaminase, and lactate dehydrogenase), liver oxidative stress index (superoxide dismutase [SOD], catalase [CAT], and malondialdehyde), and inflammation index (tumor necrosis factor α [TNF-α], interleukin [IL]-1ß, IL-6, and lipopolysaccharides) were significantly higher in the DHC group than in the NC group (P < 0.05). These index values in the L-AS, M-AS, and H-AS groups were significantly lower than those in the DHC group (P < 0.05). The index values decreased significantly with an increase in the concentration of isorhamnetin (P < 0.05), while the index values of CAT and SOD showed the opposite tendency (P < 0.05). The expression of liver tissue nuclear factor kappa B (NF-κB), caspase-3, and heat shock protein (HSP-70) was higher in the DHC group than in the NC group (P < 0.05). Comparison between the isorhamnetin and DHC groups revealed that the expression of NF-кB and caspase-3 was decreased, while that of HSP-70 continued to increase (P < 0.05). The difference was significant for HSP-70 among all the isorhamnetin groups (P < 0.05); however, the NF-кB and caspase-3 values in the L-AS and H-AS groups did not differ. In summary, isorhamnetin has protective effects against liver injury in heat-stroke-affected rats. This protective effect may be related to its activities concerning antioxidative stress, anti-inflammatory response, inhibition of NF-кB and caspase-3 expression, and enhancement of HSP-70 expression.


Subject(s)
Heat Stroke , Quercetin/analogs & derivatives , Stroke , Rats , Animals , Rats, Sprague-Dawley , NF-kappa B/metabolism , Caspase 3/metabolism , Oxidative Stress , Liver/metabolism , Inflammation/pathology , Tumor Necrosis Factor-alpha/metabolism , Heat Stroke/complications , Heat Stroke/drug therapy , Heat Stroke/metabolism , Superoxide Dismutase/metabolism , Stroke/pathology
5.
J Bone Miner Res ; 39(3): 341-356, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38477771

ABSTRACT

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovitis, bone and cartilage destruction, and increased fracture risk with bone loss. Although disease-modifying antirheumatic drugs have dramatically improved clinical outcomes, these therapies are not universally effective in all patients because of the heterogeneity of RA pathogenesis. Therefore, it is necessary to elucidate the molecular mechanisms underlying RA pathogenesis, including associated bone loss, in order to identify novel therapeutic targets. In this study, we found that Budding uninhibited by benzimidazoles 1 (BUB1) was highly expressed in RA patients' synovium and murine ankle tissue with arthritis. As CD45+CD11b+ myeloid cells are a Bub1 highly expressing population among synovial cells in mice, myeloid cell-specific Bub1 conditional knockout (Bub1ΔLysM) mice were generated. Bub1ΔLysM mice exhibited reduced femoral bone mineral density when compared with control (Ctrl) mice under K/BxN serum-transfer arthritis, with no significant differences in joint inflammation or bone erosion based on a semi-quantitative erosion score and histological analysis. Bone histomorphometry revealed that femoral bone mass of Bub1ΔLysM under arthritis was reduced by increased osteoclastic bone resorption. RNA-seq and subsequent Gene Set Enrichment Analysis demonstrated a significantly enriched nuclear factor-kappa B pathway among upregulated genes in receptor activator of nuclear factor kappa B ligand (RANKL)-stimulated bone marrow-derived macrophages (BMMs) obtained from Bub1ΔLysM mice. Indeed, osteoclastogenesis using BMMs derived from Bub1ΔLysM was enhanced by RANKL and tumor necrosis factor-α or RANKL and IL-1ß treatment compared with Ctrl. Finally, osteoclastogenesis was increased by Bub1 inhibitor BAY1816032 treatment in BMMs derived from wildtype mice. These data suggest that Bub1 expressed in macrophages plays a protective role against inflammatory arthritis-associated bone loss through inhibition of inflammation-mediated osteoclastogenesis.


Rheumatoid arthritis (RA) is a disease caused by an abnormal immune system, resulting in inflammation, swelling, and bone destruction in the joints, along with systemic bone loss. While new medications have dramatically improved treatment efficacy, these therapies are not universally effective for all patients. Therefore, we need to understand the regulatory mechanisms behind RA, including associated bone loss, to develop better therapies. In this study, we found that Budding uninhibited by benzimidazoles 1 (Bub1) was highly expressed in inflamed joints, especially in myeloid cells, which are a type of immune cells. To explore its role, we created myeloid cell­specific Bub1 conditional knockout (cKO) mice and induced arthritis to analyze its role during arthritis. The cKO mice exhibited lower bone mineral density when compared with control mice under inflammatory arthritis because of increased osteoclastic bone resorption, without significant differences in joint inflammation or bone erosion. Further investigation showed that Bub1 prevents excessive osteoclast differentiation induced by inflammation in bone marrow macrophages. These data suggest that Bub1 in macrophages protects against bone loss caused by inflammatory arthritis, offering potential insights for developing treatments that focus on bone health.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Bone Diseases, Metabolic , Bone Resorption , Animals , Humans , Mice , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Bone Diseases, Metabolic/pathology , Bone Resorption/genetics , Inflammation/pathology , Osteoclasts/metabolism , Osteogenesis , RANK Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
J Clin Invest ; 134(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426494

ABSTRACT

Nuclear factor of activated T-cells 5 (NFAT5), an osmo-sensitive transcription factor, can be activated by isotonic stimuli, such as infection. It remains unclear, however, whether NFAT5 is required for damage-associated molecular pattern-triggered (DAMP-triggered) inflammation and immunity. Here, we found that several DAMPs increased NFAT5 expression in macrophages. In particular, serum amyloid A (SAA), primarily generated by the liver, substantially upregulated NFAT5 expression and activity through TLR2/4-JNK signalling pathway. Moreover, the SAA-TLR2/4-NFAT5 axis promoted migration and chemotaxis of macrophages in an IL-6- and chemokine ligand 2-dependent (CCL2-dependent) manner in vitro. Intraarticular injection of SAA markedly accelerated macrophage infiltration and arthritis progression in mice. By contrast, genetic ablation of NFAT5 or TLR2/4 rescued the pathology induced by SAA, confirming the SAA-TLR2/4-NFAT5 axis in vivo. Myeloid-specific depletion of NFAT5 also attenuated SAA-accelerated arthritis. Of note, inflammatory arthritis in mice strikingly induced SAA overexpression in the liver. Conversely, forced overexpression of the SAA gene in the liver accelerated joint damage, indicating that the liver contributes to bolstering chronic inflammation at remote sites by secreting SAA. Collectively, this study underscores the importance of the SAA-TLR2/4-NFAT5 axis in innate immunity, suggesting that acute phase reactant SAA mediates mutual interactions between liver and joints and ultimately aggravates chronic arthritis by enhancing macrophage activation.


Subject(s)
Arthritis , Serum Amyloid A Protein , Animals , Mice , Arthritis/metabolism , Inflammation/pathology , Liver/metabolism , Macrophage Activation , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Transcription Factors/metabolism
7.
J Ethnopharmacol ; 326: 117995, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38428656

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Inflammatory bowel disease (IBD) presents a risk of carcinogenesis, which escalates with the duration of IBD. Persistent histological inflammation is considered to be the driving factor of colitis carcinogenesis. Effective control of inflammation is helpful to prevent and treat colitis-related colorectal cancer (CAC). Anchang Yuyang Decoction (AYD), a traditional Chinese medicine (TCM) formula, is originated from the ancient prescription of TCM for treating colitis and colorectal cancer. AYD has demonstrated efficacy in treating IBD and potential anti-carcinogenic properties. AIM OF THE STUDY: This research aims to assess the therapeutic efficacy of AYD in ameliorating experimental colitis-related carcinogenesis induced by AOM/DSS. It further seeks to elucidate its potential mechanisms by integrating multiple omics sequencing approaches. MATERIALS AND METHODS: A rat model for colitis-related carcinogenesis was developed using azoxymethane (AOM)/dextran sulfate sodium (DSS). UPLC-MS identified AYD's chemical constituents. Rats were administered varying doses of AYD (18.37, 9.19 and 4.59 g/kg) orally for 53 days, with mesalazine as a positive control. The study evaluated anti-carcinogenic effects by examining adenoma number, adenoma load, abnormal crypt foci (ACF), histopathological damage, and tumor-related protein expression. Anti-inflammatory and reparative effects were assessed through body weight, disease activity index (DAI), colon length, spleen index, inflammatory cytokine levels, and tight junction protein expression. The effects on intestinal microbiota and host metabolism were explored through 16S rRNA sequencing, targeted short-chain fatty acid (SCFA) metabonomics, and non-targeted colon metabolomics. Potential AYD targets were identified through transcriptomic sequencing and validated by qRT-PCR and western blotting. RESULTS: AYD significantly reduced adenoma number, adenoma load, neoplasm-associated lesions, ACF, and tumor-related protein expression (e.g., p53, PCNA) in AOM/DSS-induced rats, thus impeding colitis-related carcinogenesis progression. AYD also alleviated histopathological damage and inflammation, promoting intestinal mucosal barrier repair. Furthermore, AYD modulated intestinal flora structure, enhanced SCFA production, and regulated colon metabolites. Transcriptomic sequencing revealed a significant impact on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Subsequent qRT-PCR and western blotting experiments indicated AYD's influence in up-regulating PPAR-γ and down-regulating PPAR-α, PPAR-ß/δ, and related proteins (thrombomodulin [Thbd], fatty acid binding protein 5 [Fabp5], stearoyl-CoA desaturase 2 [Scd2], phospholipid transfer protein [Pltp]). CONCLUSIONS: This study demonstrates AYD's ability to inhibit experimental colitis-related carcinogenesis induced by AOM/DSS. Its mechanism likely involves modulation of the PPAR signaling pathway, impacting intestinal microbiota and host metabolic equilibrium.


Subject(s)
Adenoma , Colitis , Colorectal Neoplasms , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Rats , Animals , Mice , Peroxisome Proliferator-Activated Receptors , RNA, Ribosomal, 16S , Chromatography, Liquid , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/pathology , Signal Transduction , Carcinogenesis , Azoxymethane/toxicity , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Homeostasis , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Colon
8.
Ecotoxicol Environ Saf ; 275: 116241, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38522287

ABSTRACT

Iron overload occurs due to excessive iron intake compared to the body's demand, leading to iron deposition and impairment of multiple organ functions. Our previous study demonstrated that chronic oral administration of ferric citrate (FC) caused colonic inflammatory injury. However, the precise mechanism underlying this inflammatory response remains unclear. The current study aims to investigate the mechanism by which iron overload induced by FC exposure leads to colonic inflammation. To accomplish this, mice were orally exposed to three different concentrations of FC (71 mg/kg/bw (L), 143 mg/kg/bw (M) and 286 mg/kg/bw (H)) for continuous 16 weeks, with the control group receiving ultrapure water (C). Exposure to FC caused disturbances in the excretory system, altered colonic flora alpha diversity, and enriched pathogenic bacteria, such as Mucispirillum, Helicobacter, Desulfovibrio, and Shigella. These changes led to structural disorders of the colonic flora and an inflammatory response phenotype characterized by inflammatory cells infiltration, atrophy of intestinal glands, and irregular thickening of the intestinal wall. Mechanistic studies revealed that FC-exposure activated the NF-κB signaling pathway by up-regulating TLR4, MyD88, and NF-κB mRNA levels and protein expression. This activation resulted in increased production of pro-inflammatory cytokines, further contributing to the colonic inflammation. Additionally, in vitro experiments in SW480 cells confirmed the activation of NF-κB signaling pathway by FC exposure, consistent with the in vivo findings. The significance of this study lies in its elucidation of the mechanism by which iron overload caused by FC exposure leads to colonic inflammation. By identifying the role of pathogenic bacteria and the NF-κB signaling pathway, this study could potentially offer a crucial theoretical foundation for the research on iron overload, as well as provide valuable insights for clinical iron supplementation.


Subject(s)
Ferric Compounds , Iron Overload , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Inflammation/chemically induced , Inflammation/pathology , Iron Overload/pathology , Iron/metabolism
9.
J Ethnopharmacol ; 325: 117836, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301985

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is an autoimmune disease characterized by dysfunctional T cells and dysregulated immune responses. Smilax glabra Roxb. (SGR) is a formulation used in Traditional Chinese Medicine for the treatment of inflammatory skin disorders, including psoriasis. This study explores the scientific basis for its use by examining the effects of SGR on T cell differentiation and insulin receptor signaling, relevant pathways implicated in the pathophysiology of psoriasis. AIM OF THE STUDY: This study investigates the therapeutic potential of SGR (a Chinese medicine) in psoriasis and its impact on T cell differentiation. MATERIALS AND METHODS: An integrated network pharmacology and bioinformatics approach was employed to elucidate the mechanisms of SGR in regulating T cell differentiation. A psoriasis mouse model was utilized to evaluate the effects of SGR on T cell subsets. Immunohistochemistry and gene expression analyses were conducted to investigate the modulation of insulin receptor signaling pathways by SGR. RESULTS: SGR treatment effectively reset the expression of various T cell subsets in the psoriasis mouse model, suggesting its ability to regulate T cell differentiation and immune function. Furthermore, SGR treatment inhibited insulin receptor signaling and downstream pathways, including PI3K/AKT and ERK, in psoriatic skin lesions. This indicates that SGR may exert its therapeutic effects through modulation of the insulin receptor signaling pathway. CONCLUSIONS: This study provides novel insights into the therapeutic potential of SGR in psoriasis. By modulating T cell differentiation and targeting the insulin receptor signaling pathway, SGR holds promise as a potential treatment option for psoriasis.


Subject(s)
Dermatitis , Psoriasis , Smilax , Mice , Animals , Smilax/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Insulin , T-Lymphocytes/metabolism , Skin , Psoriasis/chemically induced , Psoriasis/drug therapy , Inflammation/pathology , Immunity , Disease Models, Animal , Mice, Inbred BALB C
10.
Biochem Biophys Res Commun ; 702: 149628, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38335704

ABSTRACT

Atherosclerosis (AS) is considered to be one of the main pathogenic factors of coronary heart disease, cerebral infarction and peripheral vascular disease. Oxidative stress and inflammation run through the occurrence and development of atherosclerosis and related cardiovascular events. Muscone is a natural extract of deer musk and also the main physiological active substance of musk. This study investigated the impact of muscone on atherosclerosis. ApoE-/- mice were used to establised AS model and injected with low-dose (4 mg/kg/day) or high-dose (8 mg/kg/day) of muscone intraperitoneally for 4 weeks. Then aortic tissues were collected, and pathological sections of the aorta were prepared for oil red staining, HE and masson staining. The changes of MDA, SOD, VCAM-1, NF-κB, and TNF-α were observed by Western blotting or immunofluorescence staining. The results showed that high-dose muscone could effectively reduce the plaque area/aortic root area and relative atherosclerotic area, reduce the collagen composition in plaque tissue. In addition, we also found that high-dose muscone can effectively increase MDA level, reduce the level of SOD, and inhibit the expression of VCAM-1, NF-κB/p65, TNF-α in arterial plaques. Our results indicate that the administration of muscone has the benefit of inhibiting atherosclerosis. The potential mechanisms may be associated with antioxidant effect and inhibition of inflammatory reaction in arterial plaques. With the increasing understanding of the relationship between muscone and atherosclerosis, muscone has high potential value as a new drug to treat atherosclerosis.


Subject(s)
Atherosclerosis , Cycloparaffins , Deer , Plaque, Atherosclerotic , Mice , Animals , Plaque, Atherosclerotic/pathology , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Mice, Knockout, ApoE , Deer/metabolism , Atherosclerosis/metabolism , Inflammation/pathology , Aorta/metabolism , Superoxide Dismutase/metabolism , Apolipoproteins E/metabolism
11.
J Ethnopharmacol ; 326: 117927, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38373665

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Yanghe Decoction (JWYHD) is modified Yanghe Decoction (YHD). YHD historically utilized as a potent medicinal solution for addressing chronic inflammatory conditions, holds promising therapeutic potential in the treatment of asthma. However, the mechanisms underlying JWYHD's effects on allergic asthma remain unclear. AIM OF THE STUDY: To investigate the therapeutic effect as well as the underlying mechanisms of JWYHD on asthmatic mice. MATERIALS AND METHODS: The ovalbumin (OVA)-induced mouse model was utilized, followed by the administration of JWYHD to allergic asthmatic mice. Subsequently, inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung tissues were conducted. The levels of various cytokines including interleukin (IL)-4, IL-5, IL-13, IL-33, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ in BALF, as well as the total immunoglobulin E (IgE) content in serum, were assessed. Lung function and tissue pathology examinations were performed to assess the protective impacts of JWYHD. The chemical components of JWYHD and its lung prototype compounds (referred to the chemical components present in JWYHD that were observed in the lung) were explored by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). RNA-seq analysis revealed the regulation mechanisms of JWYHD treating asthma. Furthermore, the effect of JWYHD on type 2 innate lymphoid cells (ILC2s) in asthmatic mice was detected by flow cytometry and Smart-RNA-seq analysis. Then molecular docking analysis was used to show the interaction between identified compounds and key targets. RESULTS: JWYHD significantly attenuated the airway inflammation of asthmatic mice, reduced the levels of inflammatory cells in BALF, as well the levels of the cytokines IL-4, IL-5, IL-13, IL-33, and TNF-α in BALF and IgE in serum. Airway hyperresponsiveness (AHR) and lung inflammation infiltration were also alleviated by JWYHD. Moreover, RNA-seq analysis revealed that JWYHD attenuated airway inflammation in asthmatic mice via regulating immunity. Flow cytometry confirmed that JWYHD could inhibit ILC2 responses. ILC2 Smart-RNA-seq analysis showed that JWYHD impaired the inflammation reaction-related signaling pathways in ILC2s, and neuropilin-1 (Nrp1), endothelial transcription factor 3 (GATA3) and interleukin 1 receptor like protein 1 (ST2) might be the key targets. The molecular docking analysis investigating the connection between the primary targets and JWYHD's prototype compounds in the lung demonstrated that liquiritin apioside, icariin, glycyrrhizic acid, and uralsaponin B, identified through UPLC-Q-TOF/MS, exhibited significant affinity in binding to the mentioned key targets. CONCLUSION: Our results suggested that the mechanism of JWYHD in treating asthma might be related to limiting ILC2 responses. Our findings provided some pharmacological evidence for the clinical application of JWYHD in the treatment of asthma.


Subject(s)
Asthma , Drugs, Chinese Herbal , Immunity, Innate , Mice , Animals , Interleukin-33 , Interleukin-13 , Interleukin-5 , Molecular Docking Simulation , Lymphocytes/metabolism , Lung , Inflammation/drug therapy , Inflammation/pathology , Cytokines/metabolism , Bronchoalveolar Lavage Fluid , Immunoglobulin E , Ovalbumin/pharmacology , Mice, Inbred BALB C , Disease Models, Animal
12.
J Ethnopharmacol ; 326: 117841, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38310988

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a prominent cause of liver-related death that poses a threat to global health and is characterized by severe hepatic steatosis, lobular inflammation, and ballooning degeneration. To date, no Food and Drug Administration-approved medicine is commercially available. The Chaihu Guizhi Ganjiang Decoction (CGGD) shows potential curative effects on regulation of blood lipids and blood glucose, mitigation of organism inflammation, and amelioration of hepatic function. However, the overall regulatory mechanisms underlying its effects on NASH remain unclear. PURPOSE: This study aimed to investigate the efficiency of CGGD on methionine- and choline-deficient (MCD)-induced NASH and unravel its underlying mechanisms. METHODS: A NASH model of SD rats was established using an MCD diet for 8 weeks, and the efficacy of CGGD was evaluated based on hepatic lipid accumulation, inflammatory response, and fibrosis. The effects of CGGD on the intestinal barrier, metabolic profile, and differentially expressed genes (DEGs) profile were analyzed by integrating gut microbiota, metabolomics, and transcriptome sequencing to elucidate its mechanisms of action. RESULTS: In MCD-induced NASH rats, pathological staining demonstrated that CGGD alleviated lipid accumulation, inflammatory cell infiltration, and fibrosis in the hepatic tissue. After CGGD administration, liver index, liver weight, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) contents, liver triglycerides (TG), and free fatty acids (FFAs) were decreased, meanwhile, it down-regulated the level of proinflammatory mediators (TNF-α, IL-6, IL-1ß, MCP-1), and up-regulated the level of anti-inflammatory factors (IL-4, IL-10), and the expression of liver fibrosis markers TGFß, Acta2, Col1a1 and Col1a2 were weakened. Mechanistically, CGGD treatment altered the diversity of intestinal flora, as evidenced by the depletion of Allobaculum, Blautia, norank_f_Erysipelotrichaceae, and enrichment of the probiotic genera Roseburia, Lactobacillus, Lachnoclostridium, etc. The colonic histopathological results indicated that the gut barrier damage recovered in the CGGD treatment group, and the expression levels of colonic short-chain fatty acids (SCFAs)-specific receptors FFAR2, FFAR3, and tight junction (TJs) proteins ZO-1, Occludin, Claudin-1 were increased compared with those in the model group. Further metabolomic and transcriptomic analyses suggested that CGGD mitigated the lipotoxicity caused by glycerophospholipid and eicosanoid metabolism disorders by decreasing the levels of PLA2G4A, LPCAT1, COX2, and LOX5. In addition, CGGD could activate the inhibitory lipotoxic transcription factor PPARα, regulate the proteins of FABP1, APOC2, APOA2, and LPL to promote fatty acid catabolism, and suppress the TLR4/MyD88/NFκB pathway to attenuate NASH. CONCLUSION: Our study demonstrated that CGGD improved steatosis, inflammation, and fibrosis on NASH through enhancing intestinal barrier integrity and alleviating PPARα mediated lipotoxicity, which makes it an attractive candidate for potential new strategies for NASH prevention and treatment.


Subject(s)
Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Rats , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Rats, Sprague-Dawley , Liver , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Inflammation/pathology , Lipids/pharmacology , Methionine/metabolism , Mice, Inbred C57BL
13.
Food Funct ; 15(4): 2314-2326, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38323473

ABSTRACT

Certain types of soluble dietary fibre, such as pectin and pectic oligosaccharides from different sources, have demonstrated protective effects against inflammation in DSS-induced colitis mouse models. In this work, we have evaluated the impact of a diet enriched in apple pomace (AP-diet), an agricultural by-product with a significant content of pectin and that previously demonstrated prebiotic properties in human fecal batch fermentation models, on the gut microbiota composition, intestinal damage and inflammation markers in a DSS-induced colitis model. We found that the apple pomace enriched diet (AP-diet), providing a significant amount of pectin with demonstrated prebiotic properties, was associated with a slower increase in the disease activity index, translating into better clinical symptomatology of the animals. Histological damage scoring confirmed less severe damage in those animals receiving an AP-diet before and during the DSS administration period. Some serum inflammatory markers, such as TNFα, also demonstrated lower levels in the group receiving the AP-diet, compared to the control diet. AP-diet administration is also associated with the modulation of key taxa in the colonic microbiota of animals, such as some Lachnospiraceae genera and Ruminococcus species, including commensal short chain fatty acid producers that could play a role in attenuating inflammation at the intestinal level.


Subject(s)
Colitis , Gastrointestinal Microbiome , Malus , Mice , Animals , Humans , Colitis/chemically induced , Colitis/pathology , Inflammation/pathology , Diet , Colon/pathology , Pectins/pharmacology , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL
14.
Cell Death Dis ; 15(2): 114, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321001

ABSTRACT

As an alternative pathway for liver regeneration, liver progenitor cells and their derived ductular reaction cells increase during the progression of many chronic liver diseases. However, the mechanism underlying their hepatocyte repopulation after liver injury remains unknown. Here, we conducted progenitor cell lineage tracing in mice and found that fewer than 2% of hepatocytes were derived from liver progenitor cells after 9 weeks of injury with a choline-deficient diet supplemented with ethionine (CDE), and this percentage increased approximately three-fold after 3 weeks of recovery. We also found that the proportion of liver progenitor cells double positive for the ligand of glucocorticoid-induced tumour necrosis factor receptor (GITRL, also called Tnfsf18) and SRY-related HMG box transcription 9 (Sox9) among nonparenchymal cells increased time-dependently upon CDE injury and reduced after recovery. When GITRL was conditionally knocked out from hepatic progenitor cells, its expression in nonparenchymal cells was downregulated by approximately fifty percent, and hepatocyte repopulation increased by approximately three folds. Simultaneously, conditional knockout of GITRL reduced the proportion of liver-infiltrating CD8+ T lymphocytes and glucocorticoid-induced tumour necrosis factor receptor (GITR)-positive CD8+ T lymphocytes. Mechanistically, GITRL stimulated cell proliferation but suppressed the differentiation of liver progenitor organoids into hepatocytes, and CD8+ T cells further reduced their hepatocyte differentiation by downregulating the Wnt/ß-catenin pathway. Therefore, GITRL expressed by liver progenitor cells impairs hepatocyte differentiation, thus hindering progenitor cell-mediated liver regeneration.


Subject(s)
CD8-Positive T-Lymphocytes , Glucocorticoids , Animals , Mice , CD8-Positive T-Lymphocytes/pathology , Fibrosis , Glucocorticoids/metabolism , Hepatocytes/metabolism , Inflammation/pathology , Liver/pathology , Receptors, Tumor Necrosis Factor/metabolism , Stem Cells/metabolism , Tumor Necrosis Factors/metabolism
15.
Chin J Integr Med ; 30(4): 299-310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212502

ABSTRACT

OBJECTIVE: To investigate the effect of isorhamnetin on the pathology of rheumatoid arthritis (RA). METHODS: Tumor necrosis factor (TNF)- α -induced fibroblast-like synoviocytes (FLS) was exposed to additional isorhamnetin (10, 20 and 40 µ mol/L). Overexpression vectors for matrix metalloproteinase-2 (MMP2) or MMP9 or SRC were transfected to explore their roles in isorhamnetin-mediated RA-FLS function. RA-FLS viability, migration, and invasion were evaluated. Moreover, a collagen-induced arthritis (CIA) rat model was established. Rats were randomly divided to sham, CIA, low-, medium-, and high-dosage groups using a random number table (n=5 in each group) and administed with normal saline or additional isorhamnetin [2, 10, and 20 mg/(kg·day)] for 4 weeks, respectively. Arthritis index was calculated and synovial tissue inflammation was determined in CIA rats. The levels of MMP2, MMP9, TNF-α, interleukin-6 (IL-6), and IL-1 ß, as well as the phosphorylation levels of SRC, extracellular regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding (CREB), were detected in RA-FLS and synovial tissue. Molecular docking was also used to analyze the binding of isorhamnetin to SRC. RESULTS: In in vitro studies, isorhamnetin inhibited RA-FLS viability, migration and invasion (P<0.05). Isorhamnetin downregulated the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß in RA-FLS (P<0.05). The overexpression of either MMP2 or MMP9 reversed isorhamnetin-inhibited RA-FLS migration and invasion, as well as the levels of TNF-α, IL-6, and IL-1 ß (P<0.05). Furthermore, isorhamnetin bound to SRC and reduced the phosphorylation of SRC, ERK, and CREB (P<0.05). SRC overexpression reversed the inhibitory effect of isorhamnetin on RA-FLS viability, migration and invasion, as well as the negative regulation of MMP2 and MMP9 (P<0.05). In in vivo studies, isorhamnetin decreased arthritis index scores (P<0.05) and alleviated synovial inflammation. Isorhamnetin reduced the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß, as well as the phosphorylation of SRC, ERK, and CREB in synovial tissue (P<0.05). Notably, the inhibitory effect of isorhamnetin was more pronounced at higher concentrations (P<0.05). CONCLUSION: Isorhamnetin exhibited anti-RA effects through modulating SRC/ERK/CREB and MMP2/MMP9 signaling pathways, suggesting that isorhamnetin may be a potential therapeutic agent for RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Quercetin/analogs & derivatives , Rats , Animals , Matrix Metalloproteinase 2/metabolism , src-Family Kinases/metabolism , src-Family Kinases/pharmacology , src-Family Kinases/therapeutic use , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Matrix Metalloproteinase 9/metabolism , Molecular Docking Simulation , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Inflammation/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cells, Cultured , Fibroblasts , Cell Proliferation
16.
Biomed Pharmacother ; 171: 116190, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38278026

ABSTRACT

Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.


Subject(s)
Alzheimer Disease , Morphinans , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Neuroimmunomodulation , Scopolamine/pharmacology , Inflammation/pathology , Homeostasis , Brain/metabolism , Cholinergic Agents/pharmacology
17.
Int Immunopharmacol ; 128: 111570, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38280336

ABSTRACT

BACKGROUND: Ulcerative colitis (UC), a non-specific gastrointestinal disease, is commonly managed with aminosalicylic acids and immunosuppressive agents to control inflammation and relieve symptoms, despite frequent relapses. Isofraxidin is a coumarin compound extracted from traditional Chinese medicine, exhibiting anti-inflammatory and antioxidant properties; however, its alleviating effect on UC remains unclear. Therefore, we investigated the mechanism of isofraxidin in lipopolysaccharide (LPS)-induced cell inflammation in human intestinal epithelial cell (HIEC) and human colorectal adenocarcinoma cells (Caco-2), as well as in dextran sulfate sodium (DSS)-induced UC in mice. METHODS: We established colitis models in HIEC and Caco-2 cells and mice with LPS and DSS, respectively. Additionally, NLRP3 knockout mice and HIEC cells transfected with NLRP3 silencing gene and ML385 illustrated the role of isofraxidin in pyroptosis and oxidative stress. Data from cells and mice analyses were subjected to one-way analysis of variance or a paired t-test. RESULTS: Isofraxidin significantly alleviated LPS-induced cell inflammation and reduced lactic dehydrogenase release. Isofraxidin also reversed DSS- or LPS-induced pyroptosis in vivo and in vitro, increasing the expression of pyroptosis-related proteins. Moreover, isofraxidin alleviated oxidative stress induced by DSS or LPS, reducing reactive oxidative species (ROS), upregulation nuclear factor erythroid 2-related factor 2 (Nrf2), and promoting its entry into the nucleus. Mechanistically, ML385 reversed the inhibitory effect of isofraxidin on ROS and increased pyroptosis. CONCLUSION: Isofraxidin can inhibit pyroptosis through upregulating Nrf2, promoting its entry into the nucleus, and reducing ROS, thereby alleviating DSS-induced UC. Our results suggest isofraxidin as a promising therapeutic strategy for UC treatment.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Humans , Animals , Colitis, Ulcerative/drug therapy , NF-E2-Related Factor 2/metabolism , Dextran Sulfate/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Caco-2 Cells , Lipopolysaccharides/pharmacology , Pyroptosis , Disease Models, Animal , Colitis/chemically induced , Inflammation/pathology , Coumarins/pharmacology , Oxidative Stress , Mice, Inbred C57BL
18.
Tissue Cell ; 87: 102293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244400

ABSTRACT

The current study investigated the potential effects of probiotic supplementation on colorectal carcinogenesis chemically induced with 1,2-dimethylhydrazine (DMH) and treated with 5-fluorouracil (5FU)-based chemotherapy in mice. Animals were randomly allocated in five different groups: Control: which not receive any treatment throughout the experimental course; Colitis model group (DMH): treated with DMH; DMH+ 5FU: animals received I.P. (intraperitoneal) dose of chemotherapy on a weekly basis; DMH+PROB: animals received daily administrations (via gavage) of probiotics (Lactobacillus: acidophilus and paracasei, Bifidobacterium lactis and bifidum); and DMH+ PROB+ 5FU: animals received the same treatment as the previous groups. After ten-week treatment, mice's large intestine was collected and subjected to colon length, histopathological, periodic acid-schiff (PAS) staining and immunohistochemistry (TLR2, MyD88, NF-κB, IL-6, TLR4, TRIF, IRF-3, IFN-γ, Ki-67, KRAS, p53, IL-10, and TGF-ß) analyzes. Variance (ANOVA) and Kruskal-Wallis tests were used for statistical analysis, at significance level p 0.05. Probiotics' supplementation has increased the production of Ki-67 cell-proliferation marker, reduced body weight, and colon shortening, as well as modulated the chronic inflammatory process in colorectal carcinogenesis by inhibiting NF-κB expression and mitigating mucin depletion. Thus, these findings lay a basis for guide future studies focused on probiotics' action mechanisms in tumor microenvironment which might have implications in clinical practice.


Subject(s)
Colorectal Neoplasms , Probiotics , Mice , Animals , 1,2-Dimethylhydrazine/toxicity , NF-kappa B , Ki-67 Antigen , Carcinogenesis/pathology , Probiotics/pharmacology , Probiotics/therapeutic use , Inflammation/drug therapy , Inflammation/pathology , Colorectal Neoplasms/pathology , Fluorouracil/pharmacology , Colon/microbiology , Colon/pathology , Tumor Microenvironment
19.
J Nanobiotechnology ; 22(1): 14, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38166847

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a highly debilitating and fatal chronic lung disease that is difficult to cure clinically. IPF is characterized by a gradual decline in lung function, which leads to respiratory failure and severely affects patient quality of life and survival. Oxidative stress and chronic inflammation are believed to be important pathological mechanisms underlying the onset and progression of IPF, and the vicious cycle of NOX4-derived ROS, NLRP3 inflammasome activation, and p38 MAPK in pulmonary fibrogenesis explains the ineffectiveness of single-target or single-drug interventions. In this study, we combined astragaloside IV (AS-IV) and ligustrazine (LIG) based on the fundamental theory of traditional Chinese medicine (TCM) of "tonifying qi and activating blood" and loaded these drugs onto nanoparticles (AS_LIG@PPGC NPs) that were inhalable and could penetrate the mucosal barrier. Our results suggested that inhalation of AS_LIG@PPGC NPs significantly improved bleomycin-induced lung injury and fibrosis by regulating the NOX4-ROS-p38 MAPK and NOX4-NLRP3 pathways to treat and prevent IPF. This study not only demonstrated the superiority, feasibility, and safety of inhalation therapy for IPF intervention but also confirmed that breaking the vicious cycle of ROS and the NLRP3 inflammasome is a promising strategy for the successful treatment of IPF. Moreover, this successful nanoplatform is a good example of the integration of TCM and modern medicine.


Subject(s)
Idiopathic Pulmonary Fibrosis , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Medicine, Chinese Traditional , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Quality of Life , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Fibrosis , Inflammation/pathology , p38 Mitogen-Activated Protein Kinases
20.
Sci Rep ; 14(1): 110, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167633

ABSTRACT

Non-alcoholic fatty liver disease is a common liver disease worldwide, and is associated with dysregulation of lipid metabolism, leading to inflammation and fibrosis. Acanthopanax senticosus Harms (ASH) is widely used in traditional medicine as an adaptogen food. We examined the effect of ASH on steatohepatitis using a high-fat diet mouse model. Mice were fed a choline-deficient, L-amino acid-defined, high-fat diet with ASH extract (ASHE). After 6 weeks, liver RNA transcriptome sequencing (RNA-Seq) was performed, followed by Ingenuity Pathway Analysis (IPA). Our findings revealed that mice fed a high-fat diet with 5% ASHE exhibited significantly reduced liver steatosis. These mice also demonstrated alleviated inflammation and reduced fibrosis in the liver. IPA of RNA-Seq indicated that hepatocyte nuclear factor 4 alpha (HNF4 alpha), a transcription factor, was the activated upstream regulator (P-value 0.00155, z score = 2.413) in the liver of ASHE-fed mice. Adenosine triphosphate binding cassette transporter 8 and carboxylesterase 2, downstream targets of HNF4 alpha pathway, were upregulated. Finally, ASHE-treated HepG2 cells exposed to palmitate exhibited significantly decreased lipid droplet contents. Our study provides that ASHE can activate HNF4 alpha pathway and promote fat secretion from hepatocytes, thereby serving as a prophylactic treatment for steatohepatitis in mice.


Subject(s)
Eleutherococcus , Non-alcoholic Fatty Liver Disease , Animals , Mice , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Eleutherococcus/chemistry , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Inflammation/pathology , Disease Models, Animal , Fibrosis , Mice, Inbred C57BL , Diet, High-Fat/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL